Abstract

Afterglow luminescence (long persistent luminescence) holds great potential for nonbackground molecular imaging. However, current afterglow probes are mainly nanoparticles, and afterglow imaging systems based on organic small molecules are still lacking and have rarely been reported. Moreover, the lack of reactive sites and a universal molecular scaffold makes it difficult to design activatable afterglow probes. To address these issues, this study reports a novel kind of hemicyanine-based molecule scaffolds with stimuli-responsive afterglow luminescence, which is dependent on an intramolecular cascade photoreaction between 1O2 and the afterglow molecule to store the photoenergy for delayed luminescence after light cessation. As a proof of concept, three modular activatable molecular afterglow probes (MAPs) with a "four-in-one" molecular design by integrating a stimuli-responsive unit, 1O2-generating unit, 1O2-capturing unit, and luminescent unit into one probe are customized for quantification and imaging of targets including pH, superoxide anions, and aminopeptidase. Notably, MAPs show higher sensitivity in afterglow imaging than in fluorescence imaging because the responsive unit simultaneously controls the initiation of fluorescence (S1 to S0) and 1O2 generation (S1 to T1). Finally, MAPs are applied for high-contrast afterglow imaging of drug-induced hepatotoxicity, which is poorly evaluated in clinics and drug discovery. By reporting the sequential occurrence of oxidative stress and upregulation of aminopeptidase, such activatable afterglow probes allow noninvasive imaging of hepatotoxicity earlier than the serological and histology manifestation, indicating their promise for early diagnosis of hepatotoxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.