Abstract

This paper presents a micro Fourier transform infrared spectrometer (μFTIR), enabled by an H-shaped electrothermal microelectromechanical systems (MEMS) mirror. A special driving method was developed for obtaining a linear, uniform-speed motion of 186μm, and the tilting angle of the MEMS mirror was as small as 0.06°, so there was no need of complex closed-loop control. A telecentric lens was employed in the interferometer of the μFTIR to reduce the influence of the MEMS mirror tilting effect. Also, a new phase interpolation algorithm, instead of the traditional fringe interval method, was applied in the process of the spectral reconstruction to improve the spectral stability. Finally, the new μFTIR was applied in the composition prediction of soybeans, and the experimental results show that it can accurately measure grain moisture, protein, and fat contents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.