Abstract
In the first part of the paper we establish the pointwise convergence as t → +∞ for convolution operators ∫ Rd t d K (ty) φ(x - y)dy under the assumptions that φ(y) has integrable derivatives up to an order a and that |K(y)| ≤ c(1 + |y|) -β with α+β > d. We also estimate the Hausdorff dimension of the set where divergence may occur. In particular, when the kernel is the Fourier transform of a bounded set in the plane, we recover a two-dimensional analog of the Dirichlet theorem on the convergence of Fourier series of functions with bounded variation. In the second part of the paper we prove an equiconvergence result between Fourier integrals on euclidean spaces and expansions in eigenfunctions of elliptic operators on manifolds, which allows us to transfer some of the results proved for Fourier integrals to eigenfunction expansions. Finally, we present some examples of different behaviors between Fourier integrals, Fourier series and spherical harmonic expansions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.