Abstract
A family of orthogonal polynomials on the disk (which we call scattering polynomials) serves to formulate a remarkable Fourier expansion of the composition of a sequence of Poincare disk automorphisms. Scattering polynomials are tied to an exotic Riemannian structure on the disk that is hybrid between hyperbolic and Euclidean geometries, and the expansion therefore links this exotic structure to the usual hyperbolic one. The resulting identity is intimately connected with the scattering of plane waves in piecewise constant layered media. Indeed, a recently established combinatorial analysis of scattering sequences provides a key ingredient of the proof. At the same time, the polynomial obtained by truncation of the Fourier expansion elegantly encodes the structure of the nonlinear measurement operator associated with the finite time duration scattering experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.