Abstract

Sparse CT reconstruction continues to be an area of interest in a number of novel imaging systems. Many different approaches have been tried including model-based methods, compressed sensing approaches, and most recently deep-learning-based processing. Diffusion models, in particular, have become extremely popular due to their ability to effectively encode rich information about images and to allow for posterior sampling to generate many possible outputs. One drawback of diffusion models is that their recurrent structure tends to be computationally expensive. In this work we apply a new Fourier diffusion approach that permits processing with many fewer time steps than the standard scalar diffusion model. We present an extension of the Fourier diffusion technique and evaluate it in a simulated breast cone-beam CT system with a sparse view acquisition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.