Abstract
Fourier-based methods for monostatic and bistatic setups have been widely used for high-accuracy radar imaging. However, the multistatic configuration has several characteristics that make Fourier processing more challenging: 1) a nonuniform grid in k-space, which requires multidimensional interpolation methods, and 2) image distortion when the incident spherical wave is approximated by a plane wave. This contribution presents a Fourier-based imaging method for multistatic systems, solving the aforementioned limitations: the first, by using k-space partitioning and applying interpolation in each domain; the second, by approximating the spherical wave with multiple plane waves. Both solutions are fully parallelizable, thus allowing calculation time savings. Validation and benchmarking with a synthetic aperture radar backpropagation algorithm have been performed through 2-D and 3-D simulation-based examples. Imaging results from radar measurements have been assessed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Microwave Theory and Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.