Abstract

Since 1986, optical smoothing of the laser irradiance on targets for Inertial Confinement Fusion (ICF) has gained increasing attention. Optical smoothing can significantly reduce wavefront aberrations that produce nonuniformities in the energy distribution of the focal spot. Hot spots in the laser irradiance can induce local self focusing of the light, producing filamentation of the plasma. Filamentation can have detrimental consequences on the hydrodynamics of an ICF plasma, and can affect the growth of parametric instabilities, as well as add to the complexity of the study of such instabilities as stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS). As experiments approach and exceed breakeven (i.e., where driver energy = fusion yield), the likelihood of significant excitation of these processes increases. As a result, the authors are including a scheme for implementing optical-beam smoothing for target experiments in the baseline design for the proposed next-generation ICF facility--the National Ignition Facility (NIF). To verify the efficacy of this design for the suppression of parametric instabilites in NIF-like indirect-drive targets, the authors successfully modified a Nova beamline to simulate the proposed NIF conditions. In this article, they discuss the laser science associated with a four-color target campaign on Nova to test the effect of f-number (ratio of focal length to beam diameter) and temporal smoothing on the scaling of SBS with a four-segment interaction beam using NIF-like parameters. The results of the target series associated with the four-color configuration are discussed elsewhere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.