Abstract

Vaccines against infectious diseases are urgently needed. Therefore, modern analytical method development should be as efficient as possible to speed up vaccine development. The objectives of the study were to identify critical method parameters (CMPs) and to establish a set of steps to efficiently develop and validate a CE‐SDS method for vaccine protein analysis based on a commercially available gel buffer. The CMPs were obtained from reviewing the literature and testing the effects of gel buffer dilution. A four‐step approach, including two multivariate DoE (design of experiments) steps, was proposed, based on CMPs and was verified by CE‐SDS method development for: (i) the determination of influenza group 1 mini‐hemagglutinin glycoprotein; and (ii) the determination of polio virus particle proteins from an inactivated polio vaccine (IPV). The CMPs for sample preparation were incubation temperature(s) and time(s), pH, and reagent(s) concentration(s), and the detection wavelength. The effects of gel buffer dilution revealed the CMPs for CE‐SDS separation to be the effective length, the gel buffer concentration, and the capillary temperature. The four‐step approach based on the CMPs was efficient for the development of the two CE methods. A four‐step approach to efficiently develop capillary gel electrophoresis methods for viral vaccine protein analysis was successfully established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.