Abstract

Four distinct processes mediating protein degradation were identified in the Langendorff perfused rat heart. Hearts were biosynthetically labeled in vitro with [3H]leucine for 10 min. The subsequent release of [3H]leucine at 1.5-min intervals (2 mM nonradioactive leucine) was determined from 20 min to 8 h after labeling in rhythmically contracting hearts. Rapid turnover proteins were eliminated during the first 3 h; this degradation was not inhibited by insulin (5 nM) or isoproterenol (0.5 microM). However, the nontoxic thiol reactive agent diamide (100 microM) caused a complete inhibition of the [3H]leucine release from rapidly degraded proteins. After the elimination of rapidly degraded proteins at 3 h, the release of [3H]leucine was inhibited 35-40% by insulin (5 nM) or the lysosomal inhibitor chloroquine (30 microM), thereby defining a second vesicular process. The beta-agonist isoproterenol (0.5 microM) or the nonselective alpha-agonist naphazoline (100 microM) caused 30-35% proteolytic inhibitions, defining a third adrenergic-responsive process. The inhibitory effects of simultaneously combined insulin and chloroquine did not exceed the effect of either agent alone. However, the combined effects of insulin and isoproterenol were additive, inhibiting two-thirds of basal degradation. Beginning at 3 h after labeling a 75% proteolytic inhibition resulted from the thiol reactive agents diamide (100 microM) or N-ethylmaleimide (10 microM); the thiol protease active site inhibitor trans-epoxysuccinly-L-leucylamino-(4-quinidino)butane (50 microM) caused 65% inhibition. The 75% inhibition caused by diamide includes both the insulin-responsive and beta-adrenergic-responsive pathways. A novel fourth proteolytic process (25% of proteolysis) was thereby distinguished from the above three by its resistance to inhibition by insulin, adrenergic agonists, thiol reactive agents, or thiol protease inhibitor. Only the adrenergic-responsive process was correlated with changes in contractile rhythm or fibrillation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.