Abstract
Breast cancer response to neoadjuvant chemotherapy (NAC) is typically evaluated through the assessment of tumor size reduction after a few cycles of NAC. In case of treatment ineffectiveness, this results in the patient suffering potentially severe secondary effects without achieving any actual benefit. To identify patients achieving pathologic complete response (pCR) after NAC by spatio-temporal radiomic analysis of dynamic contrast-enhanced (DCE) MRI images acquired before treatment. Single-center, retrospective. A total of 251 DCE-MRI pretreatment images of breast cancer patients. 1.5 T/3T, T1-weighted DCE-MRI. Tumor and peritumoral regions were segmented, and 348 radiomic features that quantify texture temporal variation, enhancement kinetics heterogeneity, and morphology were extracted. Based on subsets of features identified through forward selection, machine learning (ML) logistic regression models were trained separately with all images and stratifying on cancer molecular subtype and validated with leave-one-out cross-validation. Feature significance was assessed using the Mann-Whitney U-test. Significance of the area under the receiver operating characteristics (ROC) curve (AUC) of the ML models was assessed using the associated 95% confidence interval (CI). Significance threshold was set to 0.05, adjusted with Bonferroni correction. Nine features related to texture temporal variation and enhancement kinetics heterogeneity were significant in the discrimination of cases achieving pCR vs. non-pCR. The ML models achieved significant AUC of 0.707 (all cancers, n= 251, 59 pCR), 0.824 (luminal A, n= 107, 14 pCR), 0.823 (luminal B, n= 47, 15 pCR), 0.844 (HER2 enriched, n= 25, 11 pCR), 0.803 (triple negative, n= 72, 19 pCR). Differences in imaging phenotypes were found between complete and noncomplete responders. Furthermore, ML models trained per cancer subtype achieved high performance in classifying pCR vs. non-pCR cases. They may, therefore, have potential to help stratify patients according to the level of response predicted before treatment, pending further validation with larger prospective cohorts. 4 TECHNICAL EFFICACY: Stage 4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.