Abstract

A wide variety of natural objects can be described mathematically using fractal geometry as, for example, contours of clouds, coastlines , turbulence in fluids, fracture surfaces, or rugged surfaces in contact, rocks, and so on. None of them is a real fractal, fractal characteristics disappear if an object is viewed at a scale sufficiently small. However, for a wide range of scales the natural objects look very much like fractals, in which case they can be considered fractal. There are no true fractals in nature and there are no real straight lines or circles too. Clearly, fractal models are better approximations of real objects that are straight lines or circles. If the classical Euclidean geometry is considered as a first approximation to irregular lines, planes and volumes, apparently flat on natural objects the fractal geometry is a more rigorous level of approximation. Fractal geometry provides a new scientific way of thinking about natural phenomena. According to Mandelbrot [1], a fractal is a set whose fractional dimension (Hausdorff-Besicovitch dimension) is strictly greater than its topological dimension (Euclidean dimension).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.