Abstract
The forward current transport mechanisms in Ni/Au-AlGaN/GaN Schottky diodes are studied by temperature dependent current-voltage (T-I-V) measurements from 298 to 473 K. The zero-bias barrier height qϕBn and ideality factor values determined based on the conventional thermionic-emission (TE) model are strong functions of temperature, which cannot be explained by the standard TE theory. Various transport models are considered to analyze the experimental I-V data. The fitting results indicate that the increased current at low bias is due to the trap-assisted tunneling with an effective trap density of about 8.8 × 106 cm−2, while the high-bias current flow is dominated by the TE transport mechanism, accompanied by a significant series resistance effect. By fitting the high-forward-bias I-V characteristics, the effective qϕBn values with a small negative temperature coefficient are obtained. The temperature dependence of the saturation tunneling current and qϕBn is finally explained by considering the thermally induced band gap shrinkage effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.