Abstract

Single-network hydrogels can have an internal porous structure and biocompatibility, but have lower mechanical properties. Combining these properties with another biocompatible and mechanically strong network can help in mimicking the extracellular matrix of native tissues to make them suitable for tissue scaffolds with desired performance. In the current objective, we combine the properties of poly (ethylene glycol) dimethacrylate (PEGDMA) macromer and polysaccharides as the two components in double networks (DN) for synergistic effects of both components resulting in the interpenetrating polymeric network for making it functional for replacement of injured tissues. The hydrogels were characterized by physical properties like swelling ratio, mechanical properties like tensile and compressive modulus, and rheological behavior. The chemical composition was studied using Fourier transform infrared spectroscopy (FTIR), and the thermal behavior using differential scanning calorimetry (DSC) experiments. Biodegradability and mechanical strength both are gained using double networks (DN), thus making it resemble more like living tissues. DN hydrogels were tested for cell compatibility for possible application in tissue engineering. Furthermore, these properties may allow their application as tissue-engineered scaffolds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.