Abstract

Extending the residence time of a dosage form at a particular site and controlling the release of drug from the dosage form are useful especially for achieving controlled plasma level of the drug as well as improving bioavailability. The objective of this study was to extend the GI residence time of the dosage form and control the release of Tramadol HCl using mucoadhesive tablet to achieve controlled plasma level of the drug which is especially useful for 12 hrs. Matrix tablets of Tramadol HCl were formulated using different mucoadhesive polymers namely guar gum, xanthan gum and Methocel (HPMC K15M and HPMC K100M). Formulations were evaluated for preformulation parameters, in vitro drug release profile and release kinetics. The formulations were found to have good preformulation characteristics. FTIR spectroscopy indicated the absence of any significant chemical interaction within dug and excipients. The release mechanism of Tramadol HCl from matrix tablets indicated anomalous (non-Fickian) transport mechanism and followed zero order kinetics. The retention time of the mucoadhesive tablet on the mucous membrane were investigated to develop a bioadhesive polymer-based controlled release delivery system and to evaluate the performance of such a delivery devices. The combination of HPMC K15: HPMC K100: Xanthan gum (1:2:1) and HPMC K 100: Xanthan gum (2:2) showed a greater bioadhesive strength as compared to single gum and other hydrophilic polymer combination tablet. The stability studies were performed on optimized formulation as per ICH guideline, result showed that there was no significant change in physical characteristic, adhesive strength and In vitro release.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.