Abstract

The laser-induced fluorescence (LIF) technique carried out the flow visualization for the formation of Taylor vortex, which occurred in the gap between the two coaxial cylinders. The test fluids were tap water and glycerin 60wt% solution as Newtonian fluids. Polyacrilamide (SeparanAP-30) solutions in the concentration range of 10 ppm to 1000 ppm and polyethylene-oxide (PEO15) solutions in the range of 20 ppm to 1000 ppm were tested as non-Newtonian fluids, respectively. The Reynolds number range was 80 < Re < 4.0 × 103 in the experiment. The rotating inner cylinder was accelerated under the slow condition (dRe*/ dt ≤ 1 min−1) in order to obtain a Taylor vortex flow of the stable primary mode. Flow visualization results showed that the Go¨rtler vortices of half the number of Taylor cells occurred in the gap when Taylor vortex flow of the primary mode was formed. In addition, the critical Reynolds number of the polymer solutions case, which Taylor vortices occur, because the generation of the Go¨rtler vortices was retarded. At the higher concentration of the polymer solutions, this effect became remarkable. Measurements of steady-state Taylor cells showed that the upper and the lower cells of polymer solutions became larger in wavelength than that of the Newtonian fluids. The Taylor vortex flow of non-Newtonian fluids was analyzed and the result of the Giesekus model agreed with the experimental result.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.