Abstract

In this work, we investigate the ground- and excited-state structures as well as the optical properties of a series of five formazanate dyes using state-of-the-art density-based and wavefunction-based methods. The present work is the first to evaluate the properties of formazanate-BF2 dyes with wavefunction-correlated schemes. Firstly, we show that CC2 provides more twisted ground-state geometries than DFT while both approaches lead to planar excited-state structures. Secondly, we demonstrate that the differences between the transition energies computed at TD-DFT, CIS(D), SOS-CIS(D), ADC(2), and CC2 levels are large and that the optical spectra also significantly depend on the selected geometries. Indeed, CC2 fluorescence energies computed on TD-DFT structures significantly differ from their full-CC2 counterparts. Thirdly, we discuss the importance of solvent effects evaluated with various continuum models. Fourthly, we provide comparisons with experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.