Abstract

Abstract A self-consistent model of a one-dimensional cosmic-ray (CR) halo around the Galactic disk is formulated with the restriction of a minimum number of free parameters. It is demonstrated that the turbulent cascade of MHD waves does not necessarily play an essential role in the halo formation. Instead, an increase of the Alfvén velocity with distance to the disk leads to an efficient generic mechanism of the turbulent redshift, enhancing CR scattering by the self-generated MHD waves. As a result, the calculated size of the CR halo at lower energies is determined by the halo sheath, an energy-dependent region around the disk beyond which the CR escape becomes purely advective. At sufficiently high energies, the halo size is set by the characteristic thickness of the ionized gas distribution. The calculated Galactic spectrum of protons shows a remarkable agreement with observations, reproducing the position of the spectral break at TeV and the spectral shape up to ∼10 TeV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.