Abstract

We have studied the low-temperature photoluminescence (PL) of the self-assembled InAs single quantum dots (QDs) using conventional micro-PL setup to detect PL from an individual QD. It is demonstrated, that at certain experimental conditions, what concerns the laser excitation energy, the laser power and the crystal temperature, several additional lines, redshifted relative to the ground state transition, appear in the PL spectra. These are interpreted in terms of charged exciton complexes which form due to the population of quantum dots with a nonequal amount of electrons and holes. The latter phenomenon is determined by the excess energies of photogenerated carriers and is proposed as an effective optical method to create and study charged exciton complexes in QDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.