Abstract

A high-temperature superconductor slab irradiated by a desired pattern of light is proposed to behave as a completely controllable 2-D photonic media that could be applied in a wide range of photonic devices. In this case, the permittivity spatial variation, which is fundamentally required in many photonic devices, can be achieved by means of the selective variation of cooper-pair density under patterned irradiation. The process of photo-effect in superconductors is the proposed mechanism for the deformation of the spatial distribution of cooper-pair density and for the creation of nonuniform permittivity. In this perspective, the effects of nonuniform photon irradiation on the density of paired carriers and 2-D position-dependent permittivity are modeled and calculated. Applying these results, the optical properties of several irradiation patterns leading to the formation of different types of photonic devices are studied. It is shown that, in contrast to previous superconductor photonic crystals, the proposed structure has promising advantages such as possibility of implementing tunable heterostructures, optical gratings, and permittivity gradients with significant simplicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.