Abstract

The structure of normal matrices occurring in the problem of weighted least-squares spherical harmonic analysis of measurements scattered on a sphere with random noises is investigated. Efficient algorithms for the formation of the normal matrices are derived using fundamental relations inherent to the products of two surface spherical harmonic functions. The whole elements of a normal matrix complete to spherical harmonic degree L are recursively obtained from its first row or first column extended to degree 2L with only O(L4) computational operations. Applications of the algorithms to the formation of surface normal matrices from geoid undulations and surface gravity anomalies are discussed in connection with the high-degree geopotential modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.