Abstract

Abstract Coronal loops are the building blocks of solar active regions. However, their formation mechanism remains poorly understood. Here we present direct observational evidence for the formation of coronal loops through magnetic reconnection as new magnetic fluxes emerge into the solar atmosphere. Extreme-ultraviolet observations by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) clearly show the newly formed loops following magnetic reconnection within a plasma sheet. Formation of the loops is also seen in the Hα line-core images taken by the New Vacuum Solar Telescope. Observations from the Helioseismic and Magnetic Imager on board SDO show that a positive-polarity flux concentration moves toward a negative-polarity one with a speed of ∼0.4 km s−1 before the formation of coronal loops. During the loop formation process, we found signatures of flux cancellation and subsequent enhancement of the transverse field between the two polarities. The three-dimensional magnetic field structure reconstructed through a magnetohydrostatic model shows field lines consistent with the loops in AIA images. Numerous bright blobs with an average width of 1.37 Mm appear intermittently in the plasma sheet and move upward with a projected velocity of ∼114 km s−1. The temperature, emission measure, and density of these blobs are about 3 MK, 2.0 × 1028 cm−5, and 1.2 × 1010 cm−3, respectively. A power spectral analysis of these blobs indicates that the observed reconnection is likely not dominated by a turbulent process. We have also identified flows with a velocity of 20–50 km s−1 toward the footpoints of the newly formed coronal loops.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.