Abstract

Understanding the relationship between the uptake of hydrogen gas and hydride phase formation and evolution in metal solids is a phenomenon of significant technological importance due to current development of hydrogen storage devices, sensors, and membranes. The performance of these devices is degraded by structural defect formation during incoherent metal-hydride phase transformation. In this work, atomic force and scanning electron microscopy reveal formation of nanoplates along the ⟨111⟩ directions in a (111) epitaxial Pd film. These nanostructures are observed after high temperature and high pressure gas phase hydrogenation and cooling in ambient temperature. Transmission electron microsocpy (TEM) analysis of a posthydrogenated film did not show considerable plastic deformation. The size of the nanoplates increased with increasing Pd film thickness. A formation mechanism of nanoplates is proposed: cooling the sample reactor in ambient temperature after hydrogen loading induced formation of coherent or partially coherent β-phase plates along {100} planes corresponding to minimum elastic energy of interaction between metal and hydride phases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.