Abstract
A mechanism describing the denaturation and aggregation behavior during heat-treatment of pure β-lactoglobulin and β-lactoglobulin in whey protein isolate (WPI) under selected conditions (20 to 90 gL−1 in water at pH 7.0, 78 °C) is presented. A combination of reversed-phase and gel permeation chromatography was used to study the disappearance of native β-lactoglobulin and the formation of non-native intermediates in the aggregation process. The mean reaction order for pure β-lactoglobulin and β-lactoglobulin in WPI were the same, 1.4. While the rate of β-lactoglobulin denaturation was greater in WPI there was less aggregation compared to that of pure β-lactoglobulin. More of the β-lactoglobulin in WPI remained in a non-native monomer intermediate state after 30 min of heating. After an initial lag period, during which non-native monomers appeared, aggregates formed and rapidly reached a plateau in terms of their size. These aggregates were visualized using atomic force microscopy. There was no significant effect of protein concentration on either aggregate size or the number of exposed sulfhydryls in the heated solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.