Abstract

There is limited information on the role of GABA type A receptors (GABAARs) containing α1, α5 and γ2 subunits in learning and memory. Here, we assessed the possible role of such receptors in spatial learning using the multiple T-maze (MTM) paradigm. C57BL/6J mice were trained in the MTM which induced elevated levels of α1 and α5 subunit-containing hippocampal GABAAR complexes. Moreover, spatial learning evoked a significant increase in the colocalization of α1 and α5 subunits in both, CA1 and dentate gyrus regions of the hippocampus suggesting the formation of complexes containing both subunits. Additionally, the presence of α1, α5 and γ2 subunits in high molecular weight GABAARs was detected and significant correlation in the level of α1-containing complexes with those containing α5 and γ2 subunits was demonstrated. Accordingly, α1 deficiency led to decreased levels of γ2 subunit-containing complexes, however, had no effect on α5-containing ones. On the other hand, α1 knockout mice showed impaired performance in the MTM correlating with increased levels of α5 subunit-containing GABAARs in comparison to trained floxed control animals which quickly learned the task. Taken together, these results suggest that α1, α5 and γ2-containing hippocampal GABAAR complexes play an essential role in spatial learning and memory in which targeted disruption of the α1 subunit produces profound deficits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.