Abstract

Commercially pure titanium (CP-Ti) has seen major applications in biomedical equipment. The use of selective laser melting (SLM) has become more common concerning the fabrication of CP-Ti components with a complicated shape in biomedical implants, where high strength and ductility are required. However, SLM manufactured CP-Ti often exhibits high strength and low ductility, as well as mechanical anisotropy because SLM process typically results in the formation of long columnar grains comprising of fine acicular α′ martensite. Heat treatment must be preceded to transform the acicular α′ to equiaxed α grain. This study demonstrated that annealing at 650 °C of SLM CP-Ti can create an equiaxed structure, resulting in a weakened texture. The formation of equiaxed grains occurred at two types of microstructural features, acicular α′ and irregular massive (α′m) martensite, which exhibited different sizes, morphologies, and contained different types of substructures under SLM as-fabricated condition. The formation mechanism of equiaxed grains in the α′ region is dominated by the coalescence of acicular α′ of the same variant and the dissolution of α′ into the matrix, whereas the formation mechanism in the α′m region is primarily dominated by the growth of the preexisting subgrains. A small number of equiaxed grains with new orientations were formed in the α′m region. The majority of equiaxed grains were formed in the acicular α′ region and inherited the grain orientations of the preexisting α′ or matrix. Therefore, a similar but weakened texture was inherited from the microstructure of the SLM CP-Ti after annealing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.