Abstract

This work has been carried out using methods of numerical modeling to detect weakened zones in the basement of the region in regard to the construction and economic human activities. For this purpose, we have constructed quantitative models of the stressed-deformed state of the Earth’s crust in the region considering its evolution. Determined for the first time are the structures that accumulated a tectonic-magmatic activity and produced mobile-permeable zones in the Precambrian mainly. For the first time, we have found an interrelation between localities of deep fractures (activation areas) and the stressed-deformed state of the Earth’s crust caused by the impact of regional tangential stresses. Most of mineral deposits are located within the identified weakened zones of the geological basement. Economic activity of the population is concentrated there, which affects the ecological situation in the region. In addition, most of the territory where the mobile-permeable areas are detected in the basement is overlapped by known seismogenic zones of the region. Consequently, seismic events with an increased level of magnitude are more often generated in these areas due to the detente of interblock stresses in the geological environment. The provided research indicates the necessity of studying the general geological structure of the region and identifying setting areas of ancient deep deformation structures in design and construction of the major industrial, road, hydraulic engineering and other objects.

Highlights

  • The Early Precambrian crust of the north-eastern part Baltic Shield formed during a long geological period, and the observed structure reflects the cumulative effect of multiple transformations

  • The results of our research demonstrate that development of tectonogens is caused by the influence of the deep mobile zones whose roots penetrate into the mantle, and by the stressed deformed state of the Earth’s crust subjected to the influence of external tectonic forces

  • The investigations revealed the heredity of magma feeding channels in the region from the Archaean to the Early Proterozoic, which is confirmed by geological data

Read more

Summary

Introduction

The Early Precambrian crust of the north-eastern part Baltic Shield formed during a long geological period, and the observed structure reflects the cumulative effect of multiple transformations. Projects for the construction of underground nuclear low-power plants are developed They can be alternative sources of electric and thermal energy for the development of the Russian Arctic regions. At each step of designing and constructing industrial, power engineering (especially nuclear power plants), hydraulic engineering, road and other facilities, it becomes necessary to study the general geological structure of the basement in the region and obtain physical-geological estimates of its strength properties. Solving these tasks in mining areas, which location mostly correlates with the areas of long-lived deep faults, is topical

Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.