Abstract

Models of continental flood basalt (CFB) formation are evaluated by examining their implications for the setting, mainly temperature and depth, of melting which is assumed to result from adiabatic decompression. Most attractive is the model of melting in upwelling bodies (probably plume heads) rising to the base of the continental lithosphere. This constrains the melting to 120–150 km or deeper (continental lithospheric thickness) and thus the plume potential temperatures to ≥ 300 °C higher than ambient mantle. The primary melts should be hot, MgO-rich, modified during ascent, and assimilate components of the lithosphere, which can provide the continental-like geochemical signature of many CFB. Circulation within the upwellings and presence of eclogite patches also influence magma generation and composition. Dehydration melting when plumes heat the lowermost lithosphere can generate CFB only if the source region contains ca. 15% hydrous minerals beneath the entire area covered by flood volcanics, which is difficult to justify. On the other hand, assimilation of “continental” chemical components from large parts of the lithosphere does not require such extreme metasomatism. Decompression melting under strongly thinned rifted lithosphere requires lower potential temperatures of the rising material and lesser modification of the primary magmas than the plume head model of CFB formation. Available observations do not support the contemporaneity of flood volcanism with rifts having the required sizes and histories, but more information is needed to further test this model. On the other hand, magma production can assist rift initiation and lithospheric rupture, so subsequent thinning can explain the common formation of volcanic rifted margins immediately following CFB emplacement. Ancient LIP should record the same processes as seen in young CFB.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.