Abstract

The structure and mechanical properties of austenitic 08KhN10T steel subjected to equal-channel angular pressing (ECAP) at room temperature (ɛ = 3.2) and subsequent heating are studied. In the course of ECAP, the steel undergoes a martensitic transformation; the martensite content reaches 45%. Upon heating, martensite (ferrite) transforms into austenite. The partly submicrocrystalline oriented structure of the 08Kh18N10T steel in the austenitic (55%)-martensitic (45%) state (formed upon ECAP) provides its high strain hardening (σ0.2 = 1315 N/mm2), as compared to the initial state (σ0.2 = 250 N/mm2), and high plasticity δ = 11%. After heating to 550°C, the steel has a predominantly submicrocrystalline austenitic (80%)-ferritic (20%) structure, σ0.2 = 1090 N/mm2, and δ = 11%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.