Abstract

Hydrogen exchange pulse labeling and stopped-flow circular dichroism were used to establish that the structure of the earliest detectable intermediate formed during refolding of apomyoglobin corresponds closely to that of a previously characterized equilibrium molten globule. This compact, cooperatively folded intermediate was formed in less than 5 milliseconds and contained stable, hydrogen-bonded secondary structure localized in the A, G, and H helices and part of the B helix. The remainder of the B helix folded on a much slower time scale, followed by the C and E helices and the CD loop. The data indicate that a molten globule intermediate was formed on the kinetic folding pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.