Abstract

Abstract— The unusual composition of the nakhlites, a group of pyroxenitic martian meteorites with young ages, presents an opportunity to learn about nonbasaltic magmatic activity on another planet. However, the limited number of these meteorites makes unraveling their history difficult. A promising terrestrial analog for the formation of the nakhlites is Theo's Flow in Ontario, Canada. This atypical, 120 m‐thick flow differentiated in place, forming distinct layered lithologies of peridotite, pyroxenite, and gabbro. Theo's pyroxenite and the nakhlites share strikingly similar petrographies, with concentrated euhedral to subhedral augite grains set in a plagioclase‐rich matrix. These two suites of rocks also share specific petrologic features, mineral and whole‐rock compositional features, and size and spatial distributions of cumulus grains. The numerous similarities suggest that the nakhlites formed by a similar mechanism in a surface lava flow or shallow intrusion. Their formation could have involved settling of crystals in a phenocryst‐laden flow or in situ nucleation and growth of pyroxenes in an ultramafic lava flow. The latter case is more likely and requires steady‐state nucleation and growth of clusters of pyroxene grains (and olivine in the nakhlites), circulating in a strongly convecting melt pool, followed by settling and continued growth in a thickening cumulate pile. Trapped pockets of intercumulus liquid in the pile gradually evolved, finally growing Fe‐enriched rims on cumulus grains. With sufficient evolution, the melt reached plagioclase supersaturation, causing rapid growth of plagioclase sprays and late‐stage mesostasis growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.