Abstract

Groundwater is one of the major water sources for production, living, and agricultural irrigation in the Yinchuan Plain. Owing to the influence of the regional environmental background and long-term effects of human activities, groundwater quality is generally inferior. To deeply analyze the formation mechanism and source of hydrochemical components in groundwater in the Yinchuan Plain, the traditional hydrochemical graphic method and mathematical statistics and principal component analysis-multivariate linear statistical model were used. Based on inorganic component contents of 100 phreatic water samples and 46 confined groundwater samples, the hydrochemical characteristics and quality status, spatial distribution of over-limit toxicological components, and contribution rate of hydrochemical components were analyzed. The results showed that the chemical components of groundwater were controlled by rock weathering and evaporation concentration. Dissolution-enrichment (F1), original geological environment (F2), and human activities(F3) were the principal factors that influenced groundwater hydrochemistry with the contribution rates of 73.67%, 14.45%, and 11.88%, respectively. The major over-limit toxicity indices in groundwater were NO3--N and F-. High NO3--N phreatic water was mainly influenced by agriculture activities, followed by the discharge of domestic sewage. Enrichment of groundwater F- was mainly caused by leaching of F-bearing minerals and cation exchange adsorption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.