Abstract

Based on Fabry model and finite-different time-domain (FDTD) method, the plasmonic structure composed of a metal-insulator-metal (MIM) bus waveguide and a side-coupled resonator was investigated. It is found that the transmission features can be regulated by the cavity width and coupling distance. Electromagnetically induced transparency (EIT)-like transmission can be excited by adding an identical resonator on the pre-existing structure. Combining the foregoing theoretical analysis with coupled mode theory (CMT), the formation process of the EIT-like transmission was detailedly analyzed. EIT-like transmission can also be excited in plasmonic structure with two detuned resonators. By altering the structure parameters, the transparency window can be purposefully modulated. With the merits of compact structure and simplicity in fabrication, the proposed structures may have a broad prospect of applications in highly integrated optical circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.