Abstract

Hybrid metal-polymer nanocomposite materials based on polyphenoxazine (PPhOA) and Fe3O4 nanoparticles were obtained for the first time via two methods: in situ oxidative polymerization of phenoxazine (PhOA) in an aqueous solution of isopropyl alcohol with nanoparticles of Fe3O4 being present; chemical transformations of PPhOA subjected to IR heating at 400–450 °С in the presence of FeCl3·6H2O in an inert atmosphere. Obtained hybrid Fe3O4/PPhOA nanomaterials were characterized by means of Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic absorption spectrometry (ААS), elemental analysis, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), as well as by vibrating sample magnetometry. The chemical structure, phase composition, magnetic and thermal properties of obtained nanocomposites were investigated in relation to the synthesis conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.