Abstract

Neutral vanadium, niobium, and tantalum oxide clusters are studied by single photon ionization employing a 26.5 eV/photon soft x-ray laser. During the ionization process the metal oxide clusters are almost free of fragmentation. The most stable neutral clusters of vanadium, niobium, and tantalum oxides are of the general form (MO2)0,1(M2O5)y. M2O5 is identified as a basic building unit for these three neutral metal oxide species. Each cluster family (Mm, m=1,...,9) displays at least one oxygen deficient and/or oxygen rich cluster stoichiometry in addition to the above most stable species. For tantalum and niobium families with even m, oxygen deficient clusters have the general formula (MO2)2(M2O5)y. For vanadium oxide clusters, oxygen deficient clusters are detected for all cluster families Vm (m=1,[ellipsis (horizontal)],9), with stable structures (VO2)x(V2O5)y. Oxygen rich metal oxide clusters with high ionization energies (IE>10.5 eV, 118 nm photon) are detected with general formulas expressed as (MO2)2 (M2O5)y O1,2,3. Oxygen rich clusters, in general, have up to three attached hydrogen atoms, such as VO3H1,2, V2O5H1,2, Nb2O5H1,2, etc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.