Abstract

The formation and distribution of ice upon the freezing of fresh breadcrumb were investigated using differential scanning calorimetry. Three types of wheat bread containing different amounts of sugar and dietary fiber were measured. Various frozen states were produced through freezing with different cooling rates (0.5, 1, 2, 5, 10, 20 and 30 °C/min) to −30 °C; they were then analyzed and compared by thawing with the same heating rate (10 °C/min) to 20 °C. All DSC heating traces exhibited dual endotherms in the temperature range for the melting of ice: The major transition was attributed to the ice formed in the large crumb pores (gas cells) and the minor event, which preceded the major endotherm, was assigned primarily to the ice formed in the nanometer-sized pores within the gluten-starch matrix. The size of ice crystals in the two classes of pores was estimated using the modified Gibbs–Thompson relation. The distributions of ice in these pores depended on the bread compositions. It is concluded that the complex crumb porosity plays an essential role in shaping the activities of water and ice in the breadcrumb.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.