Abstract

Formaldehyde oxime <--> nitrosomethane tautomerism, isomeric nitrone, and their common cations and anions are studied with Gaussian-2 theory using MP2(full)/6-31G geometries and with density functional theory using B3LYP/6-311+G**. Geometrical parameters, harmonic vibrational frequencies, relative stabilities, conformational stabilities, and ionization energies are compared with experimental gas-phase data when available. The formaldehyde oxime <--> nitrosomethane tautomerism is compared with the amide <--> imidol, imine <--> enamine, keto <--> enol, and nitro <--> aci-nitro tautomeric processes. Solvent effects are estimated by the self-consistent isodensity polarizable continuum model (SCIPCM). The influence of hydrogen bonding interactions with the solvent is addressed by including two water molecules. In the final evaluation, formaldehyde oxime is 15.8 kcal/mol more stable than nitrosomethane when the aqueous solvation correction of 3.8 kcal/mol is applied to the G2 energies. Unsolvated formaldehyde oxime is estimated to be 11.1 kcal/mol more stable than nitrone. The estimated gas-phase ionization energies (G2) are 362.5 kcal/mol for formaldehyde oxime, 350.6 kcal/mol for nitrosomethane, and 351.4 kcal/mol for nitrone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.