Abstract

13C NMR has been used to demonstrate the metabolism of dilute solutions of labeled formaldehyde by Escherichia coli to methanol, formate, carbon dioxide, and several other unidentified metabolites which contain labeled CH2 groups. Aeration of bacterial suspensions within the spectrometer dramatically increased the rate of oxidation to formate and carbon dioxide. Deoxygenation with nitrogen gas virtually abolished all metabolism, as did the exposure of bacteria to very high formaldehyde concentrations. Deuterium NMR of whole cells in deuterium-depleted water further demonstrated the conversion of formaldehyde-d2 to methanol-d2, ruling out a formaldehyde dismutase as an important species. Two-dimensional proton-carbon chemical shift correlation was used to reveal the chemical shifts of the protons attached to 13C labels in metabolites. The results indicate that formaldehyde is efficiently detoxified by the bacterial cell through a route or routes which do not appear to involve tetrahydrofolate. This detoxification may be in competition with the lethal antibacterial processes associated with formaldehyde.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.