Abstract

Formal verification is used to establish the compliance of software and hardware systems with important classes of requirements. System compliance with functional requirements is frequently analyzed using techniques such as model checking, and theorem proving. In addition, a technique called quantitative verification supports the analysis of the reliability, performance, and other quality-of-service (QoS) properties of systems that exhibit stochastic behavior. In this paper, we extend the applicability of quantitative verification to the common scenario when the probabilities of transition between some or all states of the Markov models analyzed by the technique are unknown, but observations of these transitions are available. To this end, we introduce a theoretical framework, and a tool chain that establish confidence intervals for the QoS properties of a software system modelled as a Markov chain with uncertain transition probabilities. We use two case studies from different application domains to assess the effectiveness of the new quantitative verification technique. Our experiments show that disregarding the above source of uncertainty may significantly affect the accuracy of the verification results, leading to wrong decisions, and low-quality software systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.