Abstract

We present an approach for formal controller synthesis of the Barcelona wastewater system. The goal of the controller is to minimize overflow in the system and to reduce environmental contamination (pollution). Due to the influence of sudden and unpredictable weather changes within the Mediterranean climate, we propose robust model predictive control strategy. This approach synthesizes control inputs (i.e., flows through network actuators) that make the system robust to uncertainties in the weather forecast; control inputs are updated in an online fashion to incorporate the newly available measurements from the system and the disturbances. We employ signal temporal logic as a formal mechanism to express the desired behavior of the system. The quantitative semantics of the logic is then used to encode the desired behavior in both the set of constraints and the objective function of the optimization problem. We propose a solution approach for the obtained worst-case optimization, which is based on transforming the nonlinear dynamics of the system into a mixed logical dynamical model. Then, we employ Monte Carlo sampling and dual reformulation to get a mixed integer linear or quadratic programming problem.The proposed approach is applied to a catchment of the Barcelona wastewater system to illustrate its effectiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.