Abstract
We show that two families of germs of real-analytic subsets in $C^{n}$ are formally equivalent if and only if they are equivalent of any finite order. We further apply the same technique to obtain analogous statements for equivalences of real-analytic self-maps and vector fields under conjugations. On the other hand, we provide an example of two sets of germs of smooth curves that are equivalent of any finite order but not formally equivalent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.