Abstract
We describe the volume dependence of matrix elements of local fields to all orders in inverse powers of the volume (i.e., only neglecting contributions that decay exponentially with volume). Using the scaling Lee–Yang model and the Ising model in a magnetic field as testing ground, we compare them to matrix elements extracted in finite volume using truncated conformal space approach to exact form factors obtained using the bootstrap method. We obtain solid confirmation for the form factor bootstrap, which is different from all previously available tests in that it is a non-perturbative and direct comparison of exact form factors to multi-particle matrix elements of local operators, computed from the Hamiltonian formulation of the quantum field theory. We also demonstrate that combining form factor bootstrap and truncated conformal space is an effective method for evaluating finite volume form factors in integrable field theories over the whole range in volume.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.