Abstract

Shell structures generated from hanging models have structurally efficient forms. Form-control of these shells, which aims to obtain structural forms with single- and multiple target heights due to some architectural requirements, is discussed in this article. First, the vector form intrinsic finite element method is applied to generate the equilibrium form of hanging membranes and thus shell structures. Subsequently, the form-control problem is discussed, which aims to generate a structural form subject to given target height constrains. By introducing the Local Linearization Method to adjust Young’s modulus of the initial structural model, a form-control strategy to generate the equilibrium structural form with a single target height is proposed. By introducing the Inverse Iteration Method to adjust the geometry of the initial model, a form-control strategy to generate the equilibrium structural form with several target heights is proposed. Moreover, to verify the effectiveness of the vector form intrinsic finite element method and form-control strategies, structural analyses and shell behavior assessment of these shells are conducted. These strategies are effective and efficient, which can help architects or engineers to determine structurally efficient geometries in the design process much more easily.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.