Abstract

AbstractThe FUGIN CO survey revealed the three-dimensional structure of a galactic shock wave in the tangential direction of the 4 kpc molecular arm. The shock front is located at G30.5+00.0 + 95 km s−1 on the upstream (lower longitude) side of the star-forming complex W 43 (G30.8−0.03), and comprises a molecular bow shock (MBS) concave to W 43, exhibiting an arc-shaped molecular ridge perpendicular to the galactic plane with width ∼0${^{\circ}_{.}}$1(10 pc) and vertical length ∼1° (100 pc). The MBS is coincident with the radio continuum bow of thermal origin, indicating association of ionized gas and similarity to a cometary bright-rimmed cloud. The upstream edge of the bow is sharp, with a growth width of ∼0.5 pc indicative of the shock front property. The velocity width is ∼10 km s−1, and the center velocity decreases by ∼15 km s−1 from the bottom to the top of the bow. The total mass of molecular gas in the MBS is estimated to be ∼1.2 × 106 M⊙, and ionized gas ∼2 × 104 M⊙. The vertical disk thickness has a step-like increase at the MBS by ∼2 times from lower to upper longitudes, which indicates hydraulic jump in the gaseous disk. We argue that the MBS was formed by the galactic shock compression of an accelerated flow in the spiral-arm potential encountering the W 43 molecular complex. A bow-shock theory can reproduce the bow morphology well. We argue that molecular bows are common in galactic shock waves, not only in the Galaxy but also in galaxies, where MBSs are associated with giant cometary H ii regions. We also analyzed the H i data in the same region to obtain a map of H i optical depth and molecular fraction. We found firm evidence of the H i to H2 transition in the galactic shock as revealed by a sharp molecular front at the MBS front.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.