Abstract
Abstract. Burnt area assessment due to forest fires is an important aspect to estimate the extent of loss of biodiversity which has become feasible even in hilly and inaccessible areas with the help of geospatial technologies. But satellite data also has some limitations as it increases commission error by misclassifying non-burnt areas as burnt areas. To reduce this commission error, present study has attempted to integrate multi-sensor satellite data to characterize and extract forest fire burnt areas in Uttarakhand which is a fire prone hilly state in Western Himalaya. Landsat-8 and Sentinel-2 optical datasets have been used to calculate eleven vegetation/burn indices to identify burn patches for fire season of 2022 (February to June). These vegetation/burn indices have been calculated from Landsat-8 and Sentinel-2 datasets and integrated using Fuzzy Logic Modelling to get characterized forest fire burnt area maps. Accuracy assessment has been done using Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) active fire points for the characterized map of burnt area by Landsat-8, Sentinel-2 and combining indices from both sensors. The fuzzy map of burnt area using Landsat-8 showed the accuracy of 66.25%, while Sentinel-2 showed accuracy of 59.79% and the integration of fuzzy burnt area maps of both sensors showed the highest accuracy of 79.66%. This information of characterized burnt areas of a region can help forest managers to identify high vulnerable areas to focus on during the fire season to prevent the losses to natural resources, life and property in the region.
Full Text
Topics from this Paper
Burnt Area
Visible Infrared Imaging Radiometer Suite
Areas In Uttarakhand
Burnt Area Maps
Moderate Resolution Imaging Spectroradiometer
+ Show 5 more
Create a personalized feed of these topics
Get StartedTalk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Remote sensing
Jun 21, 2018
Remote Sensing of Environment
Nov 1, 2019
International Journal of Applied Earth Observation and Geoinformation
Jun 1, 2019
Remote Sensing of Environment
Dec 1, 2018
Remote Sensing
Jun 26, 2020
Jul 1, 2007
Fire
Sep 4, 2021
Remote Sensing of Environment
Dec 1, 2022
International Journal of Remote Sensing
Nov 1, 2020
Remote Sensing
Feb 23, 2021
Remote Sensing of Environment
Oct 1, 2022
Climate
Apr 16, 2019
Hydrology and Earth System Sciences
Dec 20, 2019
Remote Sensing
Sep 4, 2020
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Oct 19, 2023
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Oct 19, 2023
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Oct 19, 2023
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Oct 19, 2023
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Oct 19, 2023
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Oct 19, 2023
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Oct 19, 2023
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Oct 19, 2023
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Oct 19, 2023
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Oct 19, 2023