Abstract

A foreground calibration technique of a pipeline analog-to-digital converter (ADC) has been presented in this paper. This work puts an emphasis on erroneous ADC output occurring due to device mismatch, which, in any standard CMOS process boils down to capacitor mismatch. Deviation of gain of a multiplying digital-to-analog converter (MDAC), also known as the radix of a pipeline ADC stage, from its ideal values adds to the non-linearity of the ADC output. Capacitor mismatch is a major contributor for such an error. The proposed foreground calibration technique makes use of a simple arithmetic unit to extract the radix value from the ADC output for calibration. It uses a sinusoidal signal at the input for calibration purposes. The input sinusoidal signal can be sampled by the ADC clock at any rate for the calibration algorithm to be successful. Behavioral simulation of a pipeline ADC with 5% capacitor mismatch supports the established technique. To verify the calibration algorithm further, pipeline ADCs of different resolutions have been designed and simulated in a 0.18μm CMOS process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.