Abstract
Abstract. Forecasting urban expansion models are a very powerful tool in the hands of urban planners in order to anticipate and mitigate future urbanization pressures. In this paper, a linear regression forecasting urban expansion model is implemented based on the annual composite night lights time series available from National Oceanic and Atmospheric Administration (NOAA). The product known as 'stable lights' is used in particular, after it has been corrected with a standard intercalibration process to reduce artificial year-to-year fluctuations as much as possible. Forecasting is done for ten years after the end of the time series. Because the method is spatially explicit the predicted expansion trends are relatively accurately mapped. Two metrics are used to validate the process. The first one is the year-to-year Sum of Lights (SoL) variation. The second is the year-to-year image correlation coefficient. Overall it is evident that the method is able to provide an insight on future urbanization pressures in order to be taken into account in planning. The trends are quantified in a clear spatial manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.