Abstract

Abstract We propose a simple way of predicting time series with recurring seasonal periods. Missing values of the time series are estimated and interpolated in a preprocessing step. We combine several forecasting methods by taking the weighted mean of forecasts that were generated with time-domain models which were validated on left-out parts of the time series. The hybrid model is a combination of a neural network ensemble, an ensemble of nearest trajectory models and a model for the 7-day cycle. We apply this approach to the NN5 time series competition data set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.