Abstract

Predicting sweet corn (Zea mays var. rugosa Bonaf.) harvest dates based on simple linear regression has failed to provide planting schedules that result in the uniform delivery of raw product to processing plants. Adjusting for the date that the field was at 80% silk in one model improved the forecast accuracy if year, field location, cultivar, soil albedo, herbicide family used, kernel moisture, and planting date were used as independent variables. Among predictive models, forecasting the Julian harvest date had the highest correlation with independent variables (R2 = 0.943) and the lowest coefficient of variation (cv = 1.31%). In a model predicting growing-degree days between planting date and harvest, R2 (coefficient of determination) = 0.85 and cv = 2.79%. In the model predicting sunlight hours between planting and harvest, R2 = 0.88 and cv = 6.41%. Predicting the Julian harvest date using several independent variables was more accurate than other models using a simple linear regression based on growing-degree days when compared to actual harvest time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.