Abstract
Stock prices as time series are non-stationary and highly-noisy due to the fact that stock markets are affected by a variety of factors. Predicting stock price or index with the noisy data directly is usually subject to large errors. In this paper, we propose a new approach to forecasting the stock prices via the Wavelet De-noising-based Back Propagation (WDBP) neural network. An effective algorithm for predicting the stock prices is developed. The monthly closing price data with the Shanghai Composite Index from January 1993 to December 2009 are used to illustrate the application of the WDBP neural network based algorithm in predicting the stock index. To show the advantage of this new approach for stock index forecast, the WDBP neural network is compared with the single Back Propagation (BP) neural network using the real data set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.