Abstract

In this paper, we apply a probabilistic procedure to model the attenuation of the macroseismic intensity in the Mt. Etna region, which allows estimating probabilistic seismic scenarios. Starting from the local earthquake catalogue, we select a dataset of 47 events having epicentral intensity I0 from VI to IX–X EMS, and update the model parameters previously achieved for Italy according to the Bayesian paradigm. For each class of epicentral intensity I0, we then estimate the probability distribution of the intensity at a site conditioned on the epicentre-site distance through a binomial-beta model, under the assumption of a point seismic source and isotropic decay (circular). The mode of the distribution is taken as the expected intensity Is at that site. Since the strongest earthquakes show a preferential propagation of shaking along the fault strike and a rapid decrease in the perpendicular direction, we also consider the anisotropic decay (elliptical) of the intensity due to a linear source (finite fault). We therefore transform the plane so that the ellipse has the length of the fault rupture as maximum axis and its strike as azimuth is changed into a circle with fixed diameter; then we apply the probabilistic model obtained for the isotropic case to the modified data. The entire calculation procedure is implemented in the software PROSCEN which, given the location and the epicentral intensity (and eventually the fault parameters) of the earthquake to be simulated, generates the probabilistic seismic scenario according to the isotropic and anisotropic models of attenuation. The results can be plotted on grid maps representing (1) the intensity that can be exceeded with a fixed probability, or (2) the probability of exceeding a fixed intensity value. The first representation may also find application in seismic monitoring at Etna volcano, in order to produce real-time intensity ShakeMaps based on the instrumental parameters calculated by the automatic earthquake processing system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.